Program International Conference

Brown and Beige Fat Organ Crosstalk, Signaling and Energetics

BATenergy

Bonn, March 31st - April 02nd 2025

Conference Venue

University Hospital Bonn (UKB)

Biomedical Center I (Building B13) - Lecture Hall

Supported by

DAY 0 - Sunday, March 30th 2025

17.00 – 19.00 Early Registration & Networking

DAY 1 – Monday, March 31st 2025

08.15 – 08.45 Registration

08:45 – 09:00 Welcome by Organizers (Alexander Pfeifer & Jörg Heeren)

Keynote Lecture (45 min + 15 min)

9:00 – 10:00 Brown fat as a tool to understand mitochondrial bioenergetics

Shingo Kajimura (Boston, USA)

Session 1 – Chair Stephan Herzig (20 min + 10 min)

10:00 – 10:30 Exploring thermogenic adipose tissue from inside-out

Yu-Hua Tseng (Boston, USA)

10:30 - 11:00 Coffee Break

11:00 – 11:30 Alternative regulators of BAT

Alexander Pfeifer (Bonn, DE)

11:30 – 12:00 UCP1: Regulation and metabolic significance

Jan Nedergaard (Stockholm, SE)

12:00 – 13:00 Lunch

Session 2 – Chair Barbara Cannon (20 min + 10 min)

13:00 – 13:30 T	ranscriptional and	posttranscriptiona	l activation of	thermogenesis
------------------------	--------------------	--------------------	-----------------	---------------

Hei Sook Sul (Berkeley, USA)

13:30 – 14:00 Elucidating adipocyte lipid storage via spatial proteomics

Natalie Krahmer (Munich, DE)

14:00 – 14:30 Mechanisms of brown fat involution

Joerg Heeren (Hamburg, DE)

14:30 – 15:00 Coffee Break

DAY 1 – Monday, March 31st 2025 (continued)

Session 3 - Chair Alexander Pfeifer (20 min + 10 min)

15:00 – 15:30 Non-invasive imaging of brown fat activity

Martin Klingenspor (Munich, DE)

15:30 – 16:00 Circadian and thermogenic control of metabolite transport in adipocyte

mitochondria

Zach Gerhart-Hines (Copenhagen, DK)

Short Talk Session 1 – Chair Christian Schlein (10 min + 5 min)

16:00 – 16:15 Irina Shabalina (Stockholm, SE)

16:15 – 16:30 Tongtong Wang (Zurich, CH)

Poster Session 1 with Wine, Beer & Refreshments

16:30 – 18:30 Foyer

19:00 Participants Gathering

DAY 2 - Tuesday, April 01st 2025

Session 4 – Chair Alexander Bartelt (20 min + 10 min)

09:00 – 09:30 Adipose tissue composition and its impact on metabolic control

Christian Wolfrum (Zurich, CH)

09:30 – 10:00 Primary cilia – how to determine fate and function of progenitor cells in

the adipose tissue

Dagmar Wachten (Bonn, DE)

10:00 – 10:30 Coffee Break

10:30 – 11:00 Uncoupled respiration in white adipocytes: A novel mechanism for energy

expenditure and thermogenesis

Shannon Reilly (New York, USA)

Podium Discussion with Editors - Panel Hosts Alexander Pfeifer, Jörg Heeren,

Martin Klingenspor

11:00 – 11:30 Francesca La Rosa (Nature Communications), Revati Dewal (Nature

Metabolism) and Patrick Schaefer (Cell Metabolism)

Short Talk Session 2 – Chair Anna Worthmann (10 min + 5 min)

11:30 – 11:45 Anastasia Georgiadi (Munich, DE)

11:45 – 12:00 Chunyan Wu (Zurich, CH)

12:00 – 12:15 Isabel Reinisch (Zurich, CH)

12:15 – 13:00 Lunch

Session 5 – Chair Carolina Hagberg (20 min + 10 min)

13:00 – 13:30 Novel insights into brown fat biology from a third dimension

Yongguo Li (Bonn, DE)

13:30 – 14:00 Defining the vascular niche of human adipose tissue across metabolic

conditions

Joanna Kalucka (Aarhus, DK)

14:15 Group Picture

Social Event

16:00 Participants Gathering

DAY 3 - Wednesday, April 02nd 2025

Session 6 – Chair Anne Bouloumie-Diehl (20 min + 10 min)

09:00 – 09:30 Pharmacological and nutritional activation of thermogenic adipose tissue

Jan-Wilhelm Kornfeld (Odense, DK)

09:30 – 10:00 Recent advances in human BAT research

Kirsi Virtanen (Turku, FI)

10:00 – 10:30 Coffee Break

Poster Session 2

10:30 – 12:30 Foyer

12:30 – 13:30 Lunch

Session 7 – Chair Tobias Fromme (20 min + 10 min)

13:30 – 14:00 Mapping brown adipose tissue in humans

Kirsty Spalding (Stockholm, SE)

14:00 – 14:30 Understanding the role of human brown adipose tissue in health and

disease - Insights from studies in patients with cancer

Maria Chondronikola (Cambridge, UK)

Short Talk Session 3 – Chair Kerstin Wilhelm-Jüngling (10 min + 5 min)

14:30 – 14:45 Hannah Hui (Hongkong, CN)

14:45 – 15:00 Livia Petriskova (Bratislava, SK)

15:00 – 15:15 Closing Remarks by Alexander Pfeifer & Organizing Committee

DEPARTURE

Poster Assignment (alphabetical)

Poster Session 1 (March 31st 2025)

Poster No.	Last Name	Abstract Title
1	Ali	Effects of allicin on human Simpson-Golabi-Behmel syndrome
_		cells in mediating browning phenotype
2	Alrifai	Revealing the importance of transferrin receptor-mediated iron
	2 /	uptake for efficient thermogenic response of human adipocytes
3	Amaouche	Effects of clock desynchronization on brown adipose tissue
	7	function
4	A	L-amino acid transporter 1 regulates thermogenesis of human
4	Arianti	brown adipocytes by controling metabolic and transcriptomic
		program Nfe2l1 in Myf5+ progenitors is required for proper development
5	Auer	of brown adipose tissue
		Interplay of lipid and ketone body metabolism in activated
6	Behrens	brown adipose tissue
		Preoptic PNOC neurons modulate energy expenditure and
7	Ben-Kraiem	brown adipose tissue function
		The Ube2h complex regulates insulin signaling in brown
8	Blaas	adipocytes via mTORC1
_		Multimodal epigenetic and enhancer network remodeling shape
9	Briand	the transcriptional landscape of beige adipocytes
10		Mitochondrial Stress Test to Analyze Effects of Adipocyte
10	Broghammer	Browning in Human Mature Adipocytes
11	Draunenargar	Effects of time-of-day on the noradrenaline, adrenaline, cortisol
11	Braunsperger	and blood lipidome response to an ice bath
12	Corral Plaza	Characterization of brown adipose tissue during the
12	COTTATTIAZA	development of type 1 diabetes in rodents
13	Correa	Loss of Laminin α4 Enhances Brown Fat Activity but Drives
	Correa	Adipose Tissue Inflammation
14	Donghai	LETMD1 enhances energy expenditure in human beige
	2 2 1 1 1 1 1 1 1 1	adipocytes
15	Efthymiou	Survodutide improves systemic insulin sensitivity via early effects
	•	on adipose tissue independent of reduced food intake
16	El Marabbi	Adhesion GPCR GPR116/Adgrf5 controls a vascular niche of anti-
16 E	El-Merahbi	thermogenic adipocytes and it is an essential factor for adaptive
		thermogenesis during prolonged cold exposure The endothelial taurine transporter TAUT is important for the
17	Elschner	communication of endothelial cells and adipocytes during
''	LISCIIIICI	thermogenesis
		Charting new paths in adipose tissue organoid development via
18	Gaudriault	stromal vascular fraction
		ACTIBATE randomized controlled trial: Effects of a 24-week
19	Ghosh	exercise intervention on subcutaneous adipose tissue and
		skeletal muscle in young healthy adults

Poster No.	Last Name	Abstract Title	
20	Graelmann	Metabolic Regulation through the Aryl hydrocarbon Receptor	
		Repressor (AhRR) shapes Cellular Interactions in Adipose Tissues	
21	Gunasekaran	Vitamin K2 promotes Brown Fat Thermogenesis	
22	Hasic	Exploring aerobic and anaerobic contributions to thermogenesis in brown and brite adipose tissues	
		Beige and white subcutaneous adipocytes arise from the same	
23	Hazell Pickering	progenitor populations in cultured human adipose stem cells	
		Time-restricted feeding improves metabolic parameters and	
24	Herrero	restores circulating corticosterone's circadian rhythm in male	
		mice fed a high-fat high-sucrose diet	
25	Hiefner	Exploring the role of purinergic signaling in white adipocyte	
	THETHE	differentiation and adipose tissue function	
26	Kellenberger	Gut Microbiota Depletion Enhances Glucose Tolerance via GLP-1	
	11011011001801	Signaling	
27	Hurkmans	CD36 expressed by brown adipocytes promotes lipid disposal	
		and adaptive thermogenesis	
28 J.	Jaeckstein	Inflammatory degeneration of thermogenic brown adipose	
		tissue is regulated by purinergic adipocyte-macrophage crosstalk	
29	Jancovicova	LATS2 is an important regulator of brown adipocyte function	
		which modulates PPARg activity	
30	Jha	Novel Role of ribosomal protein, RPS4X in Brown Adipose Tissue-	
		Dependent Thermogenesis	
31	Jouffe	BMAL1 controls brown adipose metabolism in a temperature- dependent manner	
		The new SHB complex controls insulin signaling and brown	
32	Jung	adipocyte function	
33		Thiamine transporter inhibitor, Fedratinib suppresses	
	Karadsheh	thermogenic activation of human neck area-derived adipocytes	
34	Karagiannakou	Unveiling the Vascular Landscape of Murine Thermogenic Fat	
	Kardinal	The role of compartmentalized cAMP signaling in controlling	
35		brown adipose tissue homeostasis	
36	Nono Nankam	Turning Up the Heat in White Adipose Tissue: Upregulation of	
		Thermogenesis markers in Lipedema	
37	Shapiro	Gut Microbiome-Derived Metabolites Regulate Weight Gain	
		Following Smoking Cessation	

Poster Session 2 (April 02nd 2025)

Poster No.	Last Name	Abstract Title	
38	Horváth	Fstl3 as a potential switch between brown adipocyte	
30		differentiation and immunomodulatory cells	
39	Khandelwal	GRB14 regulates rate of lipolysis in activated brown adipocytes	
40	Kristóf	The importance of thiamine availability in the thermogenic	
		competency of human adipocytes	
	12.11	Fibroblast Growth Factors induce atypical expression of	
41	Küllmer	functional Ucp1 in preadipocytes and lead to an anti-	
		inflammatory state when differentiated The effects of high-fat diet-induced obesity on murine brown	
42	Lackman	adipose tissue vasculature	
43	Llerins Perez	The stress hormone ACTH activates brown fat thermogenesis	
44	Long	MEDAG functions as an A-Kinase Anchoring Protein in adipocytes	
		Divergent Structural and Functional Features of Human vs.	
45	Mansouri	Murine UCP1: Insights from a Comparative Approach	
4.5		A new mechanism underlying lipodystrophy mediated by UPS	
46	Mao	control of beta-catenin	
47	Martelli	Functionality of brown adipose tissue in the inherited forms of	
47	Marteili	lipodystrophies	
48	Mena Gómez	Lipid droplet biogenesis protect adipocytes from lipid	
	Wicha Gomez	peroxidation and cell death	
49	Meyer	A norepinephrine-AXL/MERTK axis regulates efferocytosis in	
		adipose tissue macrophages	
50	Monfort-Pires	Body adiposity and long-term cold acclimation influence meal-	
		induced hormonal responses to acute cold exposure	
51	Örling	The development of primary human brown adipose spheroids as	
		a new tool for adipose tissue research MafG regulates the Nfe2l2-mediated anti-oxidant response in	
52	Paez	brown adipocytes	
53	Petrovic	No UCP1 in kidney	
		Intrahepatic T cell responses modulate metabolic adaptation in	
54	Pilz	adipose tissues	
	Dava	Role of Calcitonin Receptor Family Signalling in Thermogenic	
55	Ran	Adipose Tissue	
56	Rodrigez	Adaptive Plasticity and Long-Term Memory of Brown Adipose	
	Fernandez	Tissue Following Cold Stimulation	
57	Rostás	Loss of Adenosine A3 receptor protects mice against high fat diet	
		induced obesity	
58	Sabaté Pérez	Complement factor D as a dual regulator of brown adipogenesis	
F0	Coor	and adipocyte metabolism	
59	Seep	cOmicsArt – a customizable Omics Analysis and reporting tool	
60	Sharma	Futile lipid cycling has a pronounced thermogenic function	
61	Simonian	Identifying the Role of Sex-Specific Hormones Dihydrotestosterone and B-Estradiol in Early Brown	
61	Simonian	Adipogenesis	
		Adipogenesis	

Poster No.	Last Name	Abstract Title	
62	Sousa Filho	Green tea does not promote thermogenesis in high-fat diet-fed mice maintained at thermoneutrality	
63	Spaehn	BK channel function in brown adipocytes promotes diet-induced obesity	
64	Stenzel	Unravelling the dietary effects of omega-3, omega-6, and saturated fatty acids on brown adipose tissue and its endothelium	
65	Strehlau	Loss of Adipose Tissue Myoglobin promotes diet induced obesity	
66	Szondy	Loss of MER tyrosine kinase attenuates adipocyte hypertrophy and leads to enhanced thermogenesis in mice exposed to high-fat diet	
67	Thodou Krokidi	Investigating the Role of FNDC4 in Metabolic-Associated Steatohepatitis (MASH) and Adipose Tissue Remodeling	
68	Tischer	The role of circulating exomiRs in thermogenic adipose tissue- skeletal muscle crosstalk during exercise	
69	Vartanova	Impact of UCP1+ Cell Loss and Regeneration on Metabolic Function	
70	Wang, Y.	Brown fat organoid culture promotes superior thermogenic development via diminishing the F-actin-YAP-HDAC mechanotransduction axis	
71	Witt	BAT macrophages show increased capacity to handle lipids upon cold exposure	
72	Yuan	Unraveling the molecular mechanisms underlying the inhibitory effects of progesterone on brown adipocyte differentiation markers	
73	Yüksel	The role of primary cilia in the communication between tissue- resident macrophages and preadipocytes in white adipose tissue	
74	Li, Z.	The Role of Protein Phosphatases in Orchestrating Thermogenesis Dynamics	